

Demo Webinar

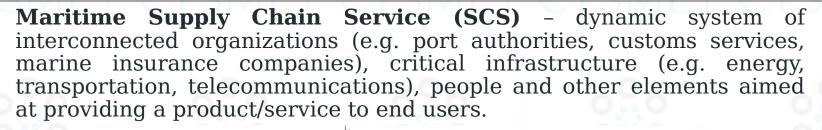
July 12, 2023

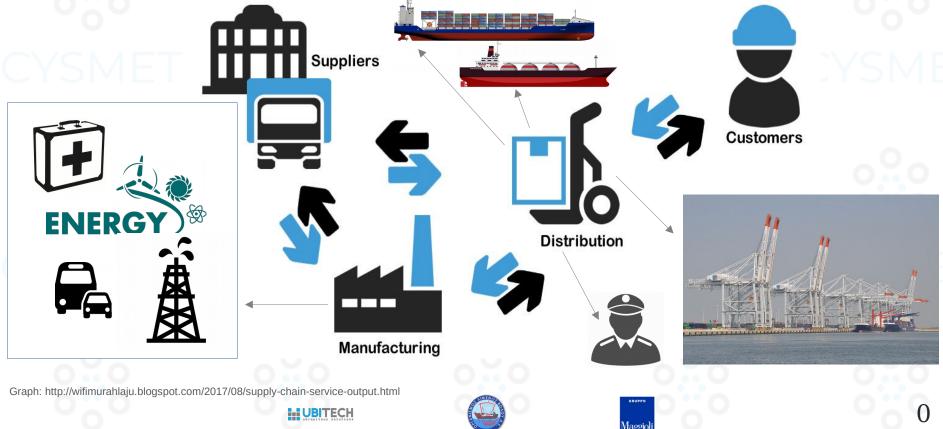
CYSMET

Integrated, Dynamic & Collaborative Risk Management System for Maritime Transport & Supply Chains Project code: T2EDK-03488

Risk Management Methodology

Ευρωπαϊκή Ένωση Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία





Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Introduction

Introduction

- SCS cybersecurity incidents increased by 51% during the second half of 2021 due to the pandemic [1]
- IoT malware

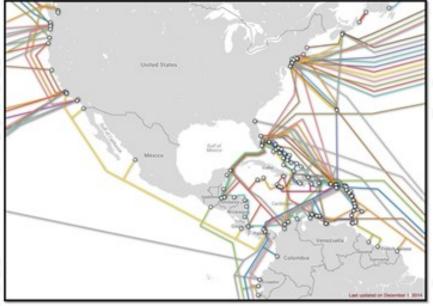
increased by almost 100% in the first half of 2022, after the drop of COVID-19 – volume of attacks higher than the last 4

years [2]

• Such events

also affect the SCSs, whose cybersecurity incidents have also found fertile ground in the conflict between Russia and Ukraine [3]

Maritime SCSs & ports


significantly increased its reliance on Information and Communications Technology (ICT) $_{\mbox{\tiny [4],[5]}}$

- Small & Medium Sized Ports (SMP)
 - are the mainstay of a variety of activities in remote areas
 - use similar systems as the larger ones but on a smaller scale lack of resources

[3] National Maritime Foundation (2022). Available online at: https://maritimeindia.org/cyber-operations-associated-with-the-ukraine-russia-conflict-an-open-source-assessment/

[4] ENISA, "Cyber security aspects in the maritime sector", December 19, 2011. https://www.enisa.europa.eu/publications/cyber-security-aspects-in-the-maritime-sector-1

[5] ENISA, "Port Cybersecurity- Good practices for cybersecurity in the maritime sector", November 26, 2019. https://www.enisa.europa.eu/publications/port-cybersecurity-good-practices-for-cybersecurity-in-the-maritime-sector [Picture] Journal of Business and Management Sciences, "How Digitalization and IoT Can Improve the Operations of Panama Canal", 2019. http://pubs.sciepub.com/jbms/7/3/5/

^[1] NCC Group research. https://campaign.cyber.nccgroup.com/insight-space-issue-6

^[2] European Union Agency for Cybersecurity (ENISA) (2022). ENISA Threat Landscape 2022. Available online at: https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022

Potential Threats & Attacks

Physical Threats [6]

- fraud
- sabotage for military, political or ideological reasons
- vandalism
- theft of property
- unauthorized access to premises, vehicles and equipment / unauthorized entry via vehicles
- terrorism for political, ideological or religious reasons
- hacktivism
- coercion, extortion or corruption
- piracy
- any sort of illegal action or other crime
- environmental or natural disasters

Cyber Threats [6]

- espionage
- interception or causing functional problems in systems through various cyber attacks
- entry of malware
- social engineering, phishing
- leakage or deletion of information by employees
- system errors / failures or malfunctions
- power or network outages
- staff shortages

Attacks

- Cyber (e.g. DDOS, XSS)
- Physical (e.g. burglary, explosion)
- Cyber-physical (combined)

[6] ENISA, "Port Cybersecurity - Good practices for cybersecurity in the maritime sector", November 26, 2019. https://www.enisa.europa.eu/publications/port-cybersecurity-good-practices-for-cybersecurity-in-the-maritime-sector

Impacts

Impacts_[6]

Port operations shutdown/paralysis

Human injury/death

Sensitive/critical data theft

Theft of cargo/goods

Illegal trafficking

Financial loss

Fraud/money theft

System failures/disaster

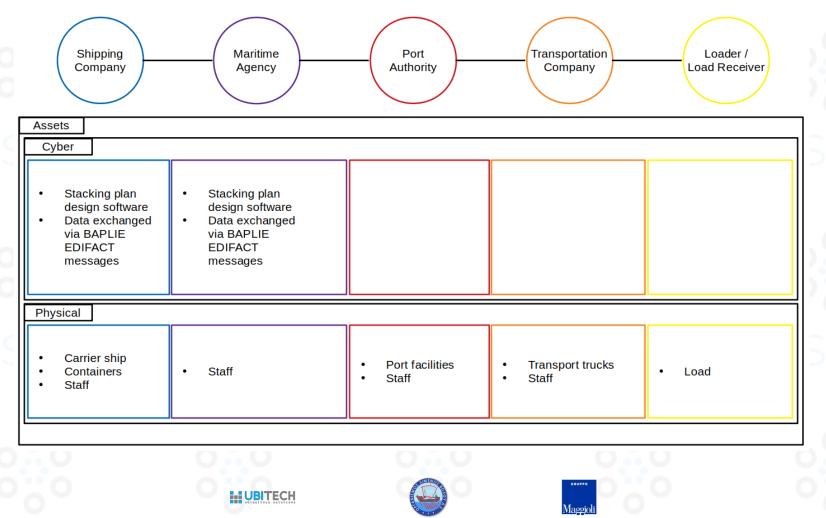
Tarnished reputation/loss of competitiveness

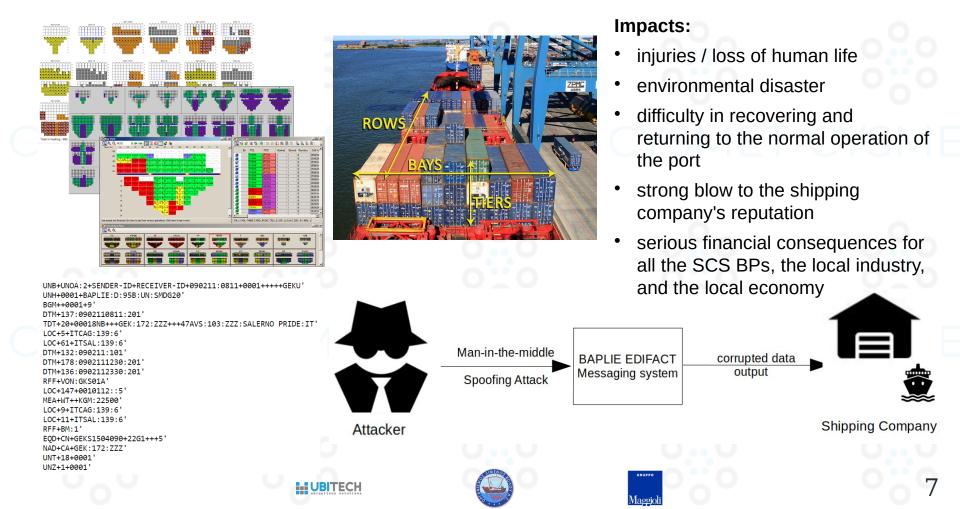
Environmental disaster

Social/commercial/political disruption

The impact of cyber attacks can extend to a SCS, even on a physical level, which, depending on the type of good (e.g. classes of dangerous goods, according to the IMO_[7]) being transported, can be more or less devastating.

[6] ENISA, "Port Cybersecurity - Good practices for cybersecurity in the maritime sector", November 26, 2019. https:// www.enisa.europa.eu/publications/port-cybersecurity-good-practices-for-cybersecurity-in-the-maritime-sector [7] IMO, "International Maritime Dangerous Goods (IMDG) Code", 2020, Corrigenda May 2022. https://wwwcdn.imo.org/localresources/en/publications/Documents/Supplements/English/QM200E_180522.pdf




Attack Scenario

SCS: Supply of local industry with raw materials in containers

Attack Scenario

Attack on shipping company's container stacking planning system

CYSMET

- Risk Management Methodology [8]
- Complies with all relevant standards and frameworks [9]
- Enhances the existing methodologies (e.g., CYSM $_{[10]}$, MEDUSA $_{[11]}$, MITIGATE $_{[12]}$, eBIOS $_{[13]}$) by:
 - including additional to ICT assets in the perimeter of the assessment (OT, IoT);
 using additional vulnerability DB records related to OT and IoT;
 - calculating risk and attack paths originated by both cyber and cyber-physical threats;
 - applying the updated v3.1 of the CVSS;
 - utilizing all CVSS v3.1 metric fields: Base, Temporal and Environmental Scores to increase accuracy of the measurements;
 - using the vulnerability and impact assessments as a combined process (the CVSS v3.1 takes into account the impact that a vulnerability exploitation could have on the environment under consideration).

- [11] ENISA, "Port Cybersecurity- Good practices for
- [12] Journal of Business and Management Sciences, "How Digitalization and IoT
- [13] Can Improve the Operations of Panama Canal", 2019. http://pubs.sciepub.com/jbms/7/3/5/

^[8] Kyranoudi, P., Polemi, N. (2023). Securing small and medium ports and their supply chain services. Frontiers Computer Science Journal, Section Computer Security, Research Topic: The Impacts of Cyber Threat in the Maritime Ecosystem, Volume 5. doi: https://doi.org/10.3389/fcomp.2023.1156726

^[9] Kyranoudi, P., Kalogeraki, E., Michota, A., Polemi, N. (2021). Cybersecurity Certification Requirements for Supply Chain Services. IEEE Symposium on Computers and Communications (ISCC), Athens, Greece, pp. 1-7. doi: 10.1109/ISCC53001.2021.9631467

^[10] ENISA, "Cyber security aspects in the maritime sector", December 19, 2011. https://www.enisa.europa.eu/publications/cyber-security-aspects-in-the-maritime-sector

CYSMET at a glance

_				
	Main axes of Risk Analysis	CYSMET Methodology		
	1. Perimeter/Boundaries setting	Step 0: Scope of SCS risk assessment		
		Step 1: Analysis of SCS		
		1.1 Scope and objectives of SCS		
		1.2 Identification of SCS-BPs		
		1.3 SCS modeling		
	2. Threat analysis	Step 2: SCS threat analysis		
		2.1 Identification of cyber and/or physical individual threats linked to an SCS asset		
		2.2 SCS threat assessment		
	3. Vulnerability analysis	Step 3: SCS vulnerability and impact analysis		
	4. Impact analysis	3.1 Determination of attacker profile		
		3.2 Identification of confirmed individual vulnerabilities		
		3.3 Identification of confirmed/zero-day vulnerabilities		
		3.4 Creation of vulnerability chains in SCS		
		3.5 Identification of attack methods and graphs		
		3.6 Assessment of individual vulnerability severity level		
	5. Risk assessment	Step 4: Risk assessment		
		4.1 Assessment of risk level of individual assets		
		4.2 Vulnerability chain risk level assessment		
	6. Risk mitigation strategy	Step 5: Risk mitigation - selection of security controls		

Scope of SCS risk assessment

- The assessor selects the SCS for which the risk assessment will be carried out, as well as its limits i.e., the scope, the objective and the expected result
- A Service Level Agreement (SLA) is created and signed by the SCS Provider and all Business Partners (BPs)

Analysis of SCS Step 1.1 Scope and objectives of SCS

The assessor defines the under consideration SCS scope and provides its objective and expected outcome.

Step 1.2 Identification of SCS-BPs

The assessor identifies the SCS-BPs, in agreement with them. Each of them declares all participants from their organization for the current risk assessment.

Step 1.3 SCS modeling

The main objective is to identify and model the main processes involved in the SCS under consideration.

SCS threat analysis Step 2.1 Identification of cyber and/or physical individual threats linked to an SCS asset

All cyber and/or physical individual threats for a specific SCS asset will be identified using online repositories, social media, crowd sourcing, threat data recorded by BPs, etc.

Step 2.2 SCS threat assessment

Threat scale values			Description		
Qualitative	Range (%)	Quantitative (%)	Incident history	Intuition and knowledge (probability)	Social information (probability)
VH	(80-100]	100	1 in the last 12 months	VH (>80%)	VH (>80%)
Н	(60-80]	80	1 in the last 12 months	H (61%-80%)	H (61%-80%)
М	(40-60]	60	>1 in the last 2 years	M (41%-60%)	M (41%-60%)
L	(20-40]	40	≤ 1 in the last 2 years	L (21%-40%)	L (21%-40%)
VL	[1-20]	20	≤ 1 in the last 3 years	VL (≤20%)	VL (≤20%)

SCS vulnerability and impact analysis

Step 3.1 Determination of attacker profile

	Attacker profile measurements					
	Qualitative	Range (%)	Quantitative (%)	Description		
	VH	85-100	93	Sophisticated, sufficient, sufficient		
	Н	65-84	75	Expert, significant, significant		
	М	35-64	50	Skilled, medium, medium		
	L	15-34	25	Narrow, limited, limited		
	VL	0-14	7	Novice, minimum, minimum		

Step 3.2 Identification of confirmed individual vulnerabilities

Online and various DBs are searched to find confirmed vulnerabilities, i.e.: NVD, CVE Details, other online DBs, commercial or open-source vulnerability scanners (e.g., OpenVas), etc.

Step 3.3 Identification of confirmed/zero-day vulnerabilities

Defined either empirically or by determining the number of publicly announced vulnerabilities for a specific time period.

SCS vulnerability and impact analysis **Step 3.4 Creation of vulnerability chains in SCS**

Step 3.5 Identification of attack methods and graphs

$$\mathbf{e.g.:} \ \mathsf{V}_1,\mathsf{A}_1 \ \rightarrow \ \mathsf{V}_5,\mathsf{A}_2 \ \rightarrow \ \mathsf{V}_7,\mathsf{A}_3$$

Step 3.6 Assessment of individual vulnerability severity level

The individual vulnerability severity level (IVSL) of each vulnerability found in the previous sub-steps is assessed, using all metrics of the CVSS v3.1 (Base, Temporal, and Environmental Scores)

Risk assessment

Step 4.1: Assessment of risk level of individual assets

Individual Risk Level

= (Threat Level*Vulnerability Level*Impact Level)

*Attacker Profile, whereVulnerability Level*ImpactLevel = IVSL

Step 4.2: Vulnerability chain risk level assessment

$$\begin{split} Risk(Vulnerability\ Chain) \\ = Risk(Node1) * Risk(Node2) * Risk(Node3) \\ ^*...^*Risk(NodeN) \end{split}$$

15

Risk mitigation – selection of security COASTONSMET is an ISO/IEC 27002 compliant risk management methodology, they can use this standard, among others, for guidance.

16

Conclusions

SMPs:

- are main economic and strategic regional drivers
- act as hubs of an SCS like major ports
- have similar needs/work under the same laws and regulations as major ports
- can be exposed to similar threats and attacks
- face financial resources limitation and security management is expensive
- can use CYSMET methodology to assess and manage their risks

Conclusions

CYSMET Risk Management Methodology:

- collaborative
- complies with all relevant standards and frameworks
- enhances the existing methodologies (i.e., IT/OT/IoT, CVSS v3.1, etc)
- allows self-assessment (easy to use, low cost)
- provision of the corresponding tool

CYSMET CYSMET CYSMET CYSMET CYSME

https://cysmet.ubitech.eu/

CYSMET

Thank you!

Acknowledgment:

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE -INNOVATE (project code:T2EDK-03488)

Ευρωπαϊκή Ένωση Ευρωπαϊκά Διαρθρωτικά και Επενδυτικά Ταμεία

- UBITECH

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

